References#

[1]

Hemant K. Aggarwal, Merry P. Mani, and Mathews Jacob. MoDL: model-based deep learning architecture for inverse problems. IEEE Transactions on Medical Imaging, 38(2):394–405, 2019. doi:10.1109/TMI.2018.2865356.

[2]

Stefano Alliney. Digital filters as absolute norm regularizers. IEEE Transactions on Signal Processing, 40(6):1548–1562, June 1992. doi:10.1109/78.139258.

[3]

Mariana S. C. Almeida and Mário Figueiredo. Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Transactions on Image Processing, 22(8):3074–3086, August 2013. doi:10.1109/TIP.2013.2258354.

[4]

Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren Ng, and Laura Waller. DiffuserCam: lensless single-exposure 3D imaging. Optica, 5(1):1–9, January 2018. doi:10.1364/optica.5.000001.

[5]

Thilo Balke, Fernando Davis, Cristina Garcia-Cardona, Soumendu Majee, Michael McCann, Luke Pfister, and Brendt Wohlberg. Scientific computational imaging code (SCICO). Journal of Open Source Software, 7(78):4722, 2022. doi:10.21105/joss.04722.

[6]

Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8:141–148, January 1988. doi:10.1093/imanum/8.1.141.

[7]

Amir Beck. First-order methods in optimization. Society for Industrial and Applied Mathematics (SIAM), 2017. ISBN 1611974984. doi:10.1137/1.9781611974997.

[8]

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. doi:10.1137/080716542.

[9]

Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419–2434, November 2009. doi:10.1109/TIP.2009.2028250.

[10]

Amir Beck and Marc Teboulle. Gradient-based algorithms with applications to signal-recovery problems. In Daniel P. Palomar and Yonina C. Eldar, editors, Convex Optimization in Signal Processing and Communications, pages 42–88. Cambridge University Press, 2010. URL: http://www.math.tau.ac.il/~teboulle/papers/gradient_chapter.pdf, doi:10.1017/CBO9780511804458.003.

[11]

Martin Benning, Florian Knoll, Carola-Bibiane Schönlieb, and Tuomo Valkonen. Preconditioned ADMM with nonlinear operator constraint. In IFIP Conference on System Modeling and Optimization (CSMO) 2015, 117–126. 2016. doi:10.1007/978-3-319-55795-3_10.

[12]

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2010. doi:10.1561/2200000016.

[13]

Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. doi:10.1137/080738970.

[14]

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, December 2010. doi:10.1007/s10851-010-0251-1.

[15]

Neal H. Clinthorne, Tin-Su Pan, Ping-Chun Chiao, W. Leslie Rogers, and John A. Stamos. Preconditioning methods for improved convergence rates in iterative reconstructions. IEEE Transactions on Medical Imaging, 12(1):78–83, March 1993. doi:10.1109/42.222670.

[16]

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image restoration by sparse 3D transform-domain collaborative filtering. In Jaakko T. Astola, Karen O. Egiazarian, and Edward R. Dougherty, editors, Image Processing: Algorithms and Systems VI, volume 6812, 62–73. International Society for Optics and Photonics, SPIE, March 2008. doi:10.1117/12.766355.

[17]

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11):1413–1457, 2004. doi:10.1002/cpa.20042.

[18]

Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating direction method of multipliers. Journal of Scientific Computing, 66(3):889–916, May 2015. doi:10.1007/s10915-015-0048-x.

[19]

Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. Unrolled optimization with deep priors. 2018. arXiv:arXiv:1705.08041v2.

[20]

Ernie Esser. Primal Dual Algorithms for Convex Models and Applications to Image Restoration, Registration and Nonlocal Inpainting. PhD thesis, University of California Los Angeles, 2010.

[21]

Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4):1015–1046, January 2010. doi:10.1137/09076934x.

[22]

Mihai I. Florea and Sergiy A. Vorobyov. A robust FISTA-like algorithm. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4521–4525. March 2017. doi:10.1109/ICASSP.2017.7953012.

[23]

Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications, 2(1):17–40, 1976. doi:10.1016/0898-1221(76)90003-1.

[24]

Stephen Gibson, Daniel Hickstein, Mikhail Ryazanov Roman Yurchak, Dhrubajyoti Das, and Gilbert Shih. Pyabel. PyAbel/PyAbel: v0.8.5, 2022. doi:10.5281/zenodo.5888391.

[25]

Roland Glowinski and Americo Marroco. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 9(R2):41–76, 1975. URL: http://eudml.org/doc/193269.

[26]

Tom Goldstein and Stanley Osher. The split Bregman method for l1-regularized problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009. doi:10.1137/080725891.

[27]

Joseph W. Goodman. Introduction to Fourier Optics. McGraw-Hill, 3 edition, 2005. ISBN 9780974707723.

[28]

Peter J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):73–101, March 1964. doi:10.1214/aoms/1177703732.

[29]

Kyong Hwan Jin, Michael T. McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9):4509–4522, 2017. doi:10.1109/TIP.2017.2713099.

[30]

Ulugbek Kamilov, Hassan Mansour, and Brendt Wohlberg. A plug-and-play priors approach for solving nonlinear imaging inverse problems. IEEE Signal Processing Letters, 24(12):1872–1876, December 2017. doi:10.1109/LSP.2017.2763583.

[31]

Ulugbek S. Kamilov. A parallel proximal algorithm for anisotropic total variation minimization. IEEE Transactions on Image Processing, 26(2):539–548, 2016. doi:10.1109/tip.2016.2629449.

[32]

Ulugbek S. Kamilov, Charles A. Bouman, Gregery T. Buzzard, and Brendt Wohlberg. Plug-and-play methods for integrating physical and learned models in computational imaging. IEEE Signal Processing Magazine, 40(1):85–97, January 2023. doi:10.1109/MSP.2022.3199595.

[33]

Jialin Liu, Cristina Garcia-Cardona, Brendt Wohlberg, and Wotao Yin. First and second order methods for online convolutional dictionary learning. SIAM Journal on Imaging Sciences, 11(2):1589–1628, 2018. arXiv:1709.00106, doi:10.1137/17M1145689.

[34]

Yifei Lou and Ming Yan. Fast L1-L2 minimization via a proximal operator. Journal of Scientific Computing, 74(2):767–785, 2018. doi:10.1007/s10915-017-0463-2.

[35]

Ymir Mäkinen, Lucio Azzari, and Alessandro Foi. Exact transform-domain noise variance for collaborative filtering of stationary correlated noise. In IEEE International Conference on Image Processing (ICIP), 185–189. September 2019. doi:10.1109/ICIP.2019.8802964.

[36]

Matteo Maggioni, Vladimir Katkovnik, Karen Egiazarian, and Alessandro Foi. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Transactions on Image Processing, 22(1):119–133, 2012. doi:10.1109/TIP.2012.2210725.

[37]

Daniele Menon, Stefano Andriani, and Giancarlo Calvagno. Demosaicing with directional filtering and a posteriori decision. IEEE Transactions on Image Processing, 16(1):132–141, January 2007. doi:10.1109/tip.2006.884928.

[38]

Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021. doi:10.1109/MSP.2020.3016905.

[39]

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006. ISBN 9780387303031. doi:10.1007/978-0-387-40065-5.

[40]

David Paganin. Coherent X-Ray Optics. Oxford University Press, January 2006. ISBN 9780198567288. doi:10.1093/acprof:oso/9780198567288.001.0001.

[41]

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127–239, 2014. doi:10.1561/2400000003.

[42]

Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In Proceedings of the International Conference on Computer Vision (ICCV), 1762–1769. Barcelona, Spain, November 2011. doi:10.1109/iccv.2011.6126441.

[43]

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, volume 9351, 234–241. Munich, Germany, October 2015. doi:10.1007/978-3-319-24574-4_28.

[44]

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4):259–268, 1992. doi:10.1016/0167-2789(92)90242-F.

[45]

Ken Sauer and Charles Bouman. A local update strategy for iterative reconstruction from projections. IEEE Transactions on Signal Processing, 41(2):534–548, February 1993. doi:10.1109/78.193196.

[46]

Ferréol Soulez, Éric Thiébaut, Antony Schutz, André Ferrari, Frédéric Courbin, and Michael Unser. Proximity operators for phase retrieval. Applied Optics, 55(26):7412–7421, September 2016. doi:10.1364/ao.55.007412.

[47]

Suhas Sreehari, Singanallur V. Venkatakrishnan, Brendt Wohlberg, Gregery T. Buzzard, Lawrence F. Drummy, Jeffrey P. Simmons, and Charles A. Bouman. Plug-and-play priors for bright field electron tomography and sparse interpolation. IEEE Transactions on Computational Imaging, 2(4):408–423, December 2016. doi:10.1109/TCI.2016.2599778.

[48]

SVMBIR Development Team. Super-Voxel Model Based Iterative Reconstruction (SVMBIR). Software library available from https://github.com/cabouman/svmbir, 2020.

[49]

Tuomo Valkonen. A primal–dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Problems, 30(5):055012, 2014. doi:10.1088/0266-5611/30/5/055012.

[50]

Singanallur V. Venkatakrishnan, Charles A. Bouman, and Brendt Wohlberg. Plug-and-play priors for model based reconstruction. In Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP), 945–948. Austin, TX, USA, December 2013. doi:10.1109/GlobalSIP.2013.6737048.

[51]

David Voelz. Computational Fourier optics : a MATLAB tutorial. SPIE Press, Bellingham, Wash, 2011. ISBN 9780819482044.

[52]

David G. Voelz and Michael C. Roggemann. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences. Applied Optics, 48(32):6132, 2009. doi:10.1364/ao.48.006132.

[53]

Brendt Wohlberg. Efficient convolutional sparse coding. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 7173–7177. May 2014. doi:10.1109/ICASSP.2014.6854992.

[54]

Brendt Wohlberg and Przemek Wozniak. Psf estimation in crowded astronomical imagery as a convolutional dictionary learning problem. IEEE Signal Processing Letters, 28:374–378, February 2021. doi:10.1109/LSP.2021.3050706.

[55]

Junfeng Yang and Xiaoming Yuan. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301–329, March 2012. doi:10.1090/s0025-5718-2012-02598-1.

[56]

Yao-Liang Yu. Better approximation and faster algorithm using the proximal average. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. 2013. URL: https://proceedings.neurips.cc/paper_files/paper/2013/file/49182f81e6a13cf5eaa496d51fea6406-Paper.pdf.

[57]

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10):6360–6376, 2022. doi:10.1109/TPAMI.2021.3088914.

[58]

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142–3155, July 2017. doi:10.1109/TIP.2017.2662206.

[59]

Bin Zhou, Li Gao, and Yu-Hong Dai. Gradient methods with adaptive step-sizes. Computational Optimization and Applications, 35:69–86, March 2006. doi:10.1007/s10589-006-6446-0.